Computer modeling of micropile systems with ZSoil

Andrzej Truty Aleksander Urbański

Politechnika Krakowska

Kraków, 2014

What is ZSoil?

 FEM software for solving 2D/3D static/dynamic soil-structure interaction problems

Main ZSoil capabilities

- Statics (short/long term) and transient dynamics for single and two-phase (partially saturated) media+structures
- Stage construction and excavation analysis is allowed in the real time scale (including consolidation and/or creep effects)
- Strong deformation discontinuities between the structure-subsoil or structure-structure can be introduced via Coulomb type interfaces
- Small strain stiffness of soils can be represented by a complex but easily calibrated nonlinear constitutive models (Hardening Soil-small (HSs) model for instance)

Why do we need FEM modeling of micropile systems?

- FEM models alow to analyze coupled micropile-foundation-subsoil systems (rehabilitation of foundation of an existing building)
- Serviceability and ultimate limit states can be analyzed
- FEM modeling helps to understand all interactions between the micropile-foundation-subsoil components
- All kind of nonlinearities can be included (in micropile itself, subsoil, interfaces)

Sources of nonlinearities in micropile-subsoil-structure system

- Subsoil behaves in a nonlinear manner
- Interface micropile-subsoil is probably the source of strongest nonlinearity
- In some cases reinforcement-concrete interface can be activated
- Concrete can crack (if bending is activated)
- Other?

Sources of uncertainties in FEM models of micropile-subsoil-structure system

- Subsoil: stress history (overconsolidation), initial pore pressures, stiffness
 - \bigcirc Geostatic conditions (K_o in situ)
 - Level of saturation
 - Dilatancy (usually $\psi = \frac{1}{6} \div \frac{1}{4} \phi'$ in triaxial tests)
- Micropile-subsoil interface: effect of micropile installation and dilatancy
 - During installation radial stresses increase locally near the micropile (we add an axisymmetric stress field into the general 3D state) → K effect
 - Priction angle in the interface depends strongly on the technology
 - Strains are large (but only locally)

Effective stress analysis in ZSoil (static case)

- **Overall equilibrium:** $\sigma_{ii,i}^{\text{tot}} + f_i = 0$
- Effective stress principle $\sigma_{ii}^{tot} = \sigma_{ij} + S p \delta_{ij}$
- Fluid flow continuity: $S \varepsilon_{kk} + v_{k,k}^F c \dot{p} = 0$
- Darcy velocity $v_i^F = -k_{ij} k_r(S) \left(-\frac{p}{\gamma^F} + z\right)$
- $k_r(S)$ function $k_r = \frac{(S S_r)^3}{(1 S_r)^3}$
- S(p) (van Genuchten)

$$S(p) = S_r + \frac{1 - S_r}{\left[1 + \left(\alpha \frac{p}{\gamma^F}\right)^2\right]^{1/2}}$$

ullet c(
ho) storage function $c=c(
ho)=n\left(rac{\mathcal{S}}{\mathcal{K}_{\mathsf{F}}}+rac{\mathsf{d}\mathcal{S}}{\mathsf{d}
ho}
ight)$

Effective stress analysis in ZSoil: possible drivers

- Quasi-undrained analysis → short loading time, low permeability (in statics)
- lacktriangle Steady state drained analysis ightarrow long loading time
- Transient case → tracing pore pressure disipation in real time

Consequences of effective stress analysis

• Parameters for soil constitutive model must be effective \rightarrow c', ϕ'

- Undrained (s_u) or transient values of strength parameters c, ϕ are naturally embedded in the theory once the consolidation driver is used and proper elasto-plastic model is used
- Cohesion results from suction pressure or effect of cementation

Soil constitutive models: M-C vs HSs

- Elasto-plastic M-C model (frequently used in practice)
 - Ultimate limit states: YES
 - Serviceability limit states: NO (most often)
- Elasto-plastic model HSs
 (since last few years quite often used in practise)
 - Ultimate limit states: * YES
 - Serviceability limit states: * YES

Technical report: R. Obrzud, A. Truty. THE HARDENING SOIL MODEL - A PRACTICAL GUIDEBOOK Z Soil.PC 100701 report

HSs model: 2 plastic mechanisms

HSs model: stiffness representation

HSs model: calibration

- (S)CPTU field test
- (S)DMT field test
- Triaxial test (CD) including shear wave velocity measurement as a calibration test for CPTU/DMT correlation formuli
- CPTU/DMT serve us stress history parameter OCR and K_o in situ

Micropile-subsoil interaction: fully conforming discretization (A)

- Resulting FE models are huge and extremely time consuming
- Each redesign of piles requires new mesh for whole system

Fully conforming discretization: interface treatment

- Interface thickness is zero
- Contact stress computation

$$\sigma_{n,N+1} = k_n g_{n,N+1}$$

 $\tau_{N+1} = \tau_N + k_s \Delta g_s$ and $|\tau_{N+1}| \leqslant \sigma'_n \operatorname{tg}(\phi) + c'$

- $igoplus k_n$ and k_s are penalty factors for rigid plastic interface
- k_n and k_s can be related to the shear band thickness t and its quasi-elastic stiffness $k_n = E/t$ while $k_s = G/t$
- Rigid plastic interface leads to overstiffening of the micropile response

Micropile-subsoil interaction: overlaid mesh approach (B)

- Resulting FE models are smaller than for conforming model
- Relatively coarse mesh for subsoil is used while mesh for micropile+interface+small part of subsoil is dense

Micropile-subsoil interaction: micropiles as 1D members embedded in 3D continuum (C)

- Resulting FE models are small
- Special interface must be implemented
- Redesign of micropile system is very easy

Micropiles as 1D members embedded in 3D continuum: interface treatment

NB. Effect of micropile installation will be discussed later

Interface micropile-subsoil in simplified approach

- In simplified approach there is no way to recover σ_n from the interface
- Hence we have to recover it from the adjacent continuum

Interface micropile-subsoil in simplified approach

Recovering σ_n from adjacent continuum

Effect of installation: K-pressure method

K-pressure method (PhD by Syawal Satibi, Stuttgart, 2009)

Effect of micropile installation

- Micropile diameter is relatively small → effect on increase of radial stress due to installation is localized in a relatively narrow zone
- This effect can be analyzed in an analytical manner using known solutions for cavity expansion problem
- In methods (A) and (B) we can use K-pressure method (PhD by Syawal Satibi, Stuttgart, 2009)
- In method (C) K-pressure method is applicable but mesh size must be carefully choosen
- Back analysis of load test may yield → K value and interface stiffness

Effect of micropile installation in method (C): possible solution

- Stress variation due to installation is neglected in subsoil
- Equivalent interface friction angle $tan(\phi^*)$ has to be used to reproduce skin friction
- This may lead to overestimation of micropile settlements near the limit state
- K-pressure is recommended (adding axisymmetric stress field)→ not available so far

Effect of dilatancy in the interface zone

- In methods (A) and (B) effect of dilatancy is present
- In simplified approach (C) this effect is missing (so far)

An example: loading test on single micropile D = 18cm

An example: micropile foundation system

3x3 and 5x5 micropile foundation system (D = 20 cm)

An example: micropile foundation system

An example: micropile foundation system

s = 3 mm s = 2.5 mm (stiffer response)

Conclusions

- Proposed simplified approach is a very useful tool for solving problems with large number of micropiles/piles
- Standard discretization technique (A) is inefficient for complex 3D problems
- Both approaches (A)/(B) and/or (C) require careful calibration of strength and stiffness parameters (by back analysis)
- Combined standard design methods (for micropile) and numerical modeling of whole system seem to be the most appropriate approach